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Abstract. We study π0π0 correlations in the exclusive reaction p̄p → 4π0 at rest with complete recon-
struction of the kinematics for each event. The inclusive distribution is fairly flat at small invariant mass
of the pion pair while a small enhancement in the double differential distribution is observed for small
invariant masses of both pion pairs. Dynamical models with resonances in the final state are shown to be
consistent with the data while the stochastic HBT mechanism is not supported by the present findings.

1 Introduction

Nucleon-antinucleon annihilation into multi-pion states
offers the possibility of studying Bose-Einstein (BE) cor-
relations under controlled conditions. While the study of
BE correlations in inclusive distributions in NN̄ annihi-
lation in the conventional Hanbury-Brown–Twiss (HBT)
framework [1] has a long history [2–4], the use of exclu-
sive distributions is relatively new. The first steps in this
direction were made in [5,6] where the exclusive reactions
p̄p → 2π+2π− and p̄p → 2π+2π−π0 at rest were stud-
ied on the basis of minimum bias CPLEAR data. For
these data, the complete kinematical reconstruction of
each event allows the direct determination of the square of
the reaction amplitude and the dynamics of the BE corre-
lations is not obscured by integration over spectators and
the usage of conventional reference samples.

The present paper extends the analysis of the exclusive
distributions for the p̄p annihilation at rest to the case
of the 4π0 final state on the basis of the Crystal Barrel
(CB) data. An appealing property of the 4π0 channel is
that there are no ρ mesons, which strongly affect the final
states with charged pions. Therefore the comparison of
the π0π0 correlations with the charged pion correlations
can clarify the origin of the signals observed.

The HBT mechanism [1], which is based on pion emis-
sion with stochastic phases over an extended emission vol-
ume, predicts an enhancement of like sign pion pairs at low
relative momentum Q2. This kind of enhancement seen for
π+π+ and π−π− pairs in many reactions is usually called
a BE signal. For the first time in an annihilation reaction,
the inclusive 2π0 pair distribution for p̄p → 4π0 shows no
such enhancement contrary to the case of p̄p → 2π+2π−

[5] where a weak enhancement was seen in the correspond-
ing π+π+ and π−π− distributions. In the double differen-
tial distribution, which is a more sensitive observable, a
small enhancement is seen in the kinematical region where
the 4π0 system forms two pion pairs, both having small
invariant masses. As we shall discuss, the strength and
the shape of the signal for the differential correlations do
not favor an interpretation in terms of the conventional
HBT picture of BE correlations. This conclusion is based
on simulations of resonance production in the 4π0 final
state which qualitatively explain the observed effects.

The plan of the paper is as follows. In Sect. 2 we de-
scribe the analysis of the data and the results for the
single variable distributions. In Sect. 3, the formalism of
double differential distributions is recapitulated. Section
4 presents detailed model calculations for the dominant
resonance mechanisms which are compared to the data.
Partial projections similar to the analysis performed ear-
lier in the 2π+2π− case are shown as well and confronted
with our dynamical model. Section 5 gives a summary and
conclusions.

2 Analysis of the 4π0 data

The Crystal Barrel experiment [8,9] at the Low Energy
Antiproton Ring (LEAR) at CERN was conceived for high
statistics meson spectroscopy. The setup relevant for the
present study used a cylindrical detector consisting of a
hydrogen gas target, tracking chambers for charged par-
ticles (proportional and jet-drift-chambers), and an elec-
tromagnetic calorimeter with 1380 CsI crystals of 16 ra-
diation lengths each for the detection of photons. The
calorimeter is surrounded by a 1.5 T solenoid magnet.
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Fig. 1. The measured single-pion momentum distribution
dNπ/d|pπ| for the 4π0 channel (thick histogram). The pure
phase space distribution is shown with ◦ and the single-pion
momentum distribution for the 2π+2π− channel [5] with �

2.1 Event selection

The 4π0 data analyzed in this study was taken by Crystal
Barrel in November 1994 using antiprotons stopped in the
hydrogen gas target at 1.2 MPa with the zero prong trig-
ger, see [8]. Offline, the data was subjected to the following
selection criteria:

– exactly 8 photon energy deposits (PED) in the calori-
meter;

– no PED adjacent to the beam pipe (risk of missing
energy);

– no p̄ pileup condition;
– no charged tracks in proportional chambers or jet-

drift-chambers (eliminates backscatters, trigger inef-
ficiency, and pair production);

– no PED below 20 MeV(suppresses split-offs);
– total momentum between 0 and 200 MeV/c, and total

energy mp̄p ± 173 MeV/c2.

For this set of events, a kinematic fit is performed and
the most likely photon combinations are chosen. Combi-
natorial background is determined by simulation to be of
the order of 18 percent. The photon energy resolution is
σE/E = 2.5%/ 4

√
E/GeV.

The measured single pion inclusive momentum distri-
bution is plotted in Fig.1. The shape of the π0 momentum
distribution differs significantly from phase space due to
the strong production of resonances in the mass region
between 1.2 GeV and 1.7 GeV as discussed in [10] and
in Sect. 4. Theoretical simulations of the according decay
distributions show that the broad peak at 0.2 GeV/c is
due to pions recoiling with small energies against a heavy
resonance like a2(1660) or π2(1670), while the maximum
around 0.65 GeV/c stems from the decay of lighter res-
onances like f2(1270) → 2π0 and maybe π(1300) → 3π0

in combination with π0 spectators. The narrow peak at
0.85 GeV/c corresponds to the p̄p → π0 + η→3π0 de-
cay. For comparison we show the single–pion distribution
for the 2π+2π− channel from [5] in Fig. 1 as well (the
2π+2π− state is dominated by other resonances, in par-
ticular, ρ0, leading to a different structure in the distri-
bution). We shall discuss resonance production models in
detail in Sect. 4.

2.2 Correlation functions for inclusive distributions

For the benefit of the reader, we summarize below the
standard BE formalism according to [5]. The single-
particle inclusive density ρ1(p1) and the two-particle inclu-
sive density ρ2(p1, p2) are related to the differential cross-
sections by

ρ1(p1) = σ−1 dσ

d3p1/(2E1)
(1)

ρ2(p1, p2) = σ−1 dσ

d3p1/(2E1) d3p2/(2E2)
. (2)

One of the definitions of pion pair correlations is based on
the formula

c(p1, p2) = ρ2(p1, p2) − ρ1(p1)ρ1(p2) . (3)

Alternatively the two-particle correlations can be de-
scribed in terms of the ratio

C(p1, p2) =
ρ2(p1, p2)
ρ0(p1, p2)

, (4)

where ρ0(p1, p2) is the two-particle distribution in the ab-
sence of correlations, with various prescriptions being used
in the literature. A choice consistent with (3) is the prod-
uct of the single-particle densities ρ0(p1, p2) = ρ1(p1)
ρ1(p2).

Averaging over angles and momenta gives a correlation
function depending on one variable, the two-pion invariant
mass M :

C(M) =
ρ2(M)

(ρ1 · ρ1)(M)
(5)

ρ2(M) =
∫

δ
(
M −

√
(p1 + p2)2

)

×ρ2(p1, p2)
d3p1d

3p2

(2E1)(2E2)
(6)

(ρ1 · ρ1)(M) =
∫

δ
(
M −

√
(p1 + p2)2

)

×ρ1(p1)ρ1(p2)
d3p1d

3p2

(2E1)(2E2)
(7)

The invariant mass M is uniquely related to the square of
the momentum difference:

(p1 − p2)2 = 4µ2 − M2 = −Q2, (8)

where µ is the pion mass and Q is the difference of the
three-momenta of the two pions in their center-of-mass
system (CMS), therefore the variables M2 and Q2 are
equivalent.

Because of the total energy-momentum conservation,
the ratio C(M) is not a constant even if the distribu-
tions dσ/(d3p1/2E1) and dσ/(d3p1/2E1)(d3p2/2E2) are
determined by phase space alone (see [5,6]). This effect
becomes negligible for reactions at much higher energy,
but it is important for annihilation at rest.
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Fig. 2a,b. Inclusive two-pion correlations vs. the effective
mass squared M2 of the pion pair in the 4π0 channel: a The ex-
perimental two-particle distribution ρ2(M), (6), in comparison
with the phase space distribution ρPS

2 (M). The simulated spec-
trum is normalized to the number of measured events. b The
ratio ρ2(M)/ρPS

2 (M). The 2π+2π− data are from [5]

2.3 Single-variable two-pion correlations

In this subsection we present as an introduction the single-
variable two-pion correlation C(M) which has been fre-
quently used in previous analyses. In order to isolate the
correlation effects we compare the experimental density
with a four-pion phase space distribution corrected for
experimental cuts and efficiencies in the same way as the
data.

The data sample of 459803 events was used to calcu-
late the two-particle distributions ρ00

2 (M) defined by (6)
for π0 pairs1, see Fig. 2a. The corresponding two-particle
density from the phase space simulation is called ρPS

2 (M).
The simulation was produced with the GEANT software
[11], and subjected to the same cuts and selections as the
real data. It comprises 956511 events. Figure 2b shows the
ratio ρ00

2 (M)/ρPS
2 (M), for which the kinematical correla-

tions discussed in Sect. 2.2 cancel.
An interesting feature is that this inclusive distribution

shows no significant peaking at small invariant mass of
the pion pair as it would be expected in the HBT model.
The little structure below 0.4 GeV2 is actually due to
projected enhancement for M2 > 1.5 GeV2 as can be seen
from the differential distributions in Sect. 3 further below.
The peak at M2 = 1.6 GeV2 is due to f2 → π0π0. In
Fig. 2b the inclusive distribution for the charged channel
p̄p → 2π+2π− from [5] is shown for comparison.

To study the correlation function C(M) in (5), the
two-particle distribution for uncorrelated pion pairs has
been calculated using the same event-mixing method as
in [5]. The experimental distribution (ρ1 · ρ1)(M) and the
simulated distribution (ρ1 ·ρ1)PS(M) are plotted in Fig. 3,
along with their ratio. Figure 4 shows the correlation func-
tions C(M) for the π0π0 pairs in comparison with the
phase space distribution. In order to remove the trivial
M -dependence which arises from the energy-momentum

1 Here and below all distributions for 4π0 events contain
multiple entries per event corresponding to all possible two–
particle combinations
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mixing events. b The ratio (ρ1 · ρ1)(M)/(ρ1 · ρ1)PS(M). The
simulated spectrum is normalized to the number of measured
events. The 2π+2π− data are from [5]
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Fig. 4. a The experimental correlation function C(M), (5),
vs. the square of the effective mass M2 of two pions in
the 4π0 channel (•) in comparison with the corresponding
phase space correlation function (◦). b The experimental cor-
relation function normalized to the phase space distribution,
C(M)/CPS(M), (9). The 2π+2π− data are from [5]

conservation, (5-7), and the influence of the experimental
cuts, the following double ratio has been calculated:

C(M)
CPS(M)

=
ρ2(M)

(ρ1 · ρ1)(M)
:

ρPS
2 (M)

(ρ1 · ρ1)PS(M)
. (9)

The result is shown in Fig.4b. Clearly the inclusive π0 pair
correlation function is fairly flat at small M . This is unex-
pected in the conventional HBT picture. It also contrasts
to our findings for charged pion correlations, where the in-
clusive correlation function shows a weak enhancement at
small M [5], see Fig.4b. For a resonance production model
describing the data by means of f2(1270), a2(1660), and
π2(1670) see Sect. 4,

3 Differential two-pion correlations

So far we have presented the inclusive correlation function
C(M)/CPS(M) where all kinematical variables except the
invariant mass M of one pion pair have been integrated
out. To investigate possible correlation signals in more de-
tail we turn to differential densities. Our approach follows
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the method used previously for the systems of charged
pions [5,6].

The reaction p̄p → 4π0 at rest in the CB experi-
ment proceeds from the S-wave state JPC = 0−+ and the
P -wave atomic states JPC = 0++, 1++, 2++. The corre-
sponding pion distribution for the final state configuration
{pi}, i = 1, 2, 3, 4, has the form

dσ({pi}) ∼ (
wS |T (k, {pi})|2 + wP |∇kT (k, {pi})|2)k→0

×dΦ4(p, p1, p2, p3, p4)

= |T (k, {pi})|2k→0
dΦ4(p, p1, p2, p3, p4) . (10)

Here T (k, {pi}) is the amplitude of the p̄p annihilation
from the initial p̄p state with relative momentum k,
dΦ4(p, p1, p2, p3, p4) is the 4-body relativistic phase space,
and the limit k → 0 implies the incoherent sum2 of the
S and P -wave states with the corresponding weights wS

and wP . The four-vectors of the pions are pi = (Ei,pi),
and p = (2mp, 0) is the total four-momentum for p̄p an-
nihilation at rest, mp being the proton mass.

We introduce the two-pion subsystems a and b with
four-momenta pa = (p1 + p2) and pb = (p3 + p4) and in-
variant masses Ma and Mb, see Fig. 5. Given the invariant
masses Ma and Mb, the double differential cross section is
defined by integrating over the angles specifying the rel-
ative orientation of the momenta of the pions within the
subsystems a and b and the relative orientation of the sub-
systems a and b (the corresponding solid angles are dΩ12,
dΩ34, dΩab). For the reaction p̄p → 4π0 we have

dσ

dM2
adM2

b

∼ W (
√

s, Ma, Mb)
∫

|T (k, {pi})|2k→0

×dΩabdΩ12dΩ34 . (11)

Here the factor W (M, Ma, Mb) is given by

W (M, Ma, Mb) =
Pab

M

√(
1 − 4µ2

M2
a

) (
1 − 4µ2

M2
b

)
, (12)

Pab = P (M, Ma, Mb) , (13)
P (M, Ma, Mb)

=

√
(M2 − (Ma + Mb)2)(M2 − (Ma − Mb)2)

2M
(14)

2 The notation |T (k, {pi})|2k→0
implies a sum over initial

spin states JPC = 0−+, 0++, 1++, 2++, and all quantum num-
bers specifying the initial spin and the total angular momen-
tum are suppressed
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Fig. 6a,b. The double-differential distributions vs. the in-
variant masses of two π0 pairs (6 entries per one physical
event): a the double-differential cross section dσ/dM2

adM2
b ;

b the double-differential density �(Ma, Mb), (15). The box
plots (top) and the surface plots (bottom) represent the same
data. Both the cross section and the density plots are not cor-
rected for acceptance. The surface plots have their origin in
the rear left corner, allowing a better view of the interesting
features of the data

where P (M, Ma, Mb) is the relative momentum of two par-
ticles with masses Ma and Mb and the total invariant mass
M , in our case M = 2mp. Removing the phase space fac-
tor W (M, Ma, Mb), we define the double–differential den-
sity:

�(Ma, Mb) =
1

W (M, Ma, Mb)
dσ

σ · dM2
adM2

b

∼
∫

|T (k, {pi})|2k→0
dΩabdΩ12dΩ34 (15)

where σ is the total cross section.
An advantage of using the double differential density

�(Ma, Mb) is that it does not contain kinematical depen-
dences on the invariant masses of the two-pion pairs a and
b. This means that for a constant T matrix the density
�(Ma, Mb) does not depend on its argument Ma and Mb,
contrary to ρ2(Ma) = dσ/dMa of (6) which unavoidably
involves the phase–space dependence.

The double-differential cross-section dσ/dM2
adM2

b cor-
responding to the raw data is shown in Fig. 6a, and the
corresponding double differential density �(Ma, Mb) in
Fig. 6b. These raw data must be corrected for the accep-
tance of the detector, which is shown in Fig. 7. The differ-
ential density �PS(Ma, Mb) is calculated using the four–
pion phase space with the detector acceptance taken into
account. The double differential density corrected for the
detector acceptance �(Ma, Mb)/�PS(Ma, Mb) is plotted in
Fig. 8. Note that the double differential view shows a weak
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enhancement at low values of M2 much weaker than in the
corresponding 2π+2π− case, see Fig. 8 of [5]. On projec-
tion the enhancement is hardly visible in the inclusive dis-
tribution of Fig. 4. The enhancements for M2

b > 1.4 GeV2

in Fig. 8 produce the little structure below 0.4 GeV2 in
Figs. 2b and 4b when the projection onto M2

a is made.
For the further discussion in Sect. 4 we construct the

following partial projections of the two–particle density.
The two–dimensional space (Ma, Mb) is divided into slices
M2

i ≤ Mb < M2
i+1 and the projections �i(Ma) are defined

by
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Fig. 9. The acceptance–corrected projections �i(Ma) of the
differential density �(Ma, Mb)/�PS(Ma, Mb) for different inter-
vals of the invariant mass of the other π0π0 pair (•). The cor-
responding projections for the like charge pion pairs in the
2π+2π− final state from the analysis [5] are shown for compar-
ison (◦). The relative momentum Q, (8), is used instead of the
invariant mass M for the sake of convenience

�i(Ma) =
∫ M2

i+1

M2
i

�(Ma, Mb)
�PS(Ma, Mb)

dM2
b (16)

The partial projections �i(Ma) are plotted in Fig. 9. There
is some peaking at small Ma in the first two slices hardly
visible in the inclusive distributions of Fig.4b. The slices in
the mass interval 0.3 GeV2 ≤ M2

b ≤ 1.2 GeV2 are more or
less flat. In comparison to the corresponding projections
for the annihilation into 2π+2π−, the observed enhance-
ment at small Q2

a in the π0π0 case is weak even for the
lowest interval 0.0 < Q2

b < 0.1 GeV2.

4 Discussion

4.1 Resonance effects

Resonances are strongly produced in the reaction p̄p →
4π0, see Figs. 6 where the signals of f2 are clearly seen
in the invariant mass projections. The total spin S and
the relative angular momentum L of the p̄p system anni-
hilating into 4π0 are constrained by the conservation of
C–parity: C = (−1)L+S = 1. Therefore, the annihilation
into 4π0 can occur in the case of the S–wave annihilation
(L = S = 0) from the state JPC = 0−+ only, and in the
case of the P–wave annihilation (L = S = 1) from the
states JPC = 0++, 1++, 2++.

Following the analysis [10] of Crystal Barrel data we
focus our attention on the most prominent mechanisms
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seen in the 4π0 channel. For the dense gaseous target at
1.2 MPa, the fractions of the total S-wave and P -wave
annihilations are approximately equal to each other [15].
For the sake of simplicity, we focus our attention on one
P -wave channel JPC = 2++, which has the largest sta-
tistical weight, and the S-wave channel JPC = 0−+. We
do not attempt to make a global fit of the data in the
4π0 channel, which would be far beyond the scope of this
paper. Rather we want to present a simple model which
turns out to describe the main features of the differential
data. The a2(1660) [16] used in our simulation has been
seen in the earlier Crystal Barrel analysis [17] and in the
reaction p̄p → K+K−π0 [18]. The following mechanisms
have been taken into consideration:

p̄p(JPC = 0−+) → a2(1660) + π0 (17)
���

f2(1270) + π0

��� 2π0

p̄p(JPC = 2++) → f2(1270) + 2π0 (18)
��� 2π0

p̄p(JPC = 2++) → a2(1660) + π0 (19)
���

f2(1270) + π0

��� 2π0

p̄p(JPC = 2++) → π2(1670) + π0 (20)
���

f2(1270) + π0

��� 2π0

p̄p(JPC = 2++) → π(1300) + π0 (21)
���

σ + π0

��� 2π0

p̄p(JPC = 2++) → σ + f0 (22)
→ 4π0

p̄p(JPC = 2++) → σ + σ (23)
→ 4π0

p̄p(JPC = 0++) → σ + σ (24)
→ 4π0

p̄p(JPC = 0++) → σ + f0 (25)
→ 4π0

The details of the calculations are given in Appendix A.
As a first step, we inspect the double–differential den-

sities corresponding to each individual mechanism in or-
der to demonstrate the effects expected if one of these
mechanisms would be dominant. In reality, a coherent su-
perposition of several mechanisms is required to describe
the data [10], therefore, as a second step, we investigate
the double-differential distributions corresponding to such
superpositions. Our goal is to find out which of the mech-
anisms considered are able to describe the global features
of the differential mass distributions. Once these features
are established we also get a prediction for the double dif-
ferential distributions near the origin from these ordinary

0.5

1

1.5

2

0.5 1 1.5 2

M2 
a  [GeV2]

M
2 b  

[G
eV

2 ]

0.5

1

1.5

2

0.5 1 1.5 2

M2 
a  [GeV2]

M
2 b  

[G
eV

2 ]

a b

0.5

1

1.5

2

0.5 1 1.5 2

M2 
a  [GeV2]

M
2 b  

[G
eV

2 ]

0.5

1

1.5

2

0.5 1 1.5 2

M2 
a  [GeV2]

M
2 b  

[G
eV

2 ]

c d

Fig. 10a–d. The double-differential density �(Ma, Mb) calcu-
lated for different reaction mechanisms: a p̄p(JPC = 0−+) →
a2(1660)→f2(1270)+π0 + π0, b p̄p(JPC = 2++) → f2(1270) +
2π0, c p̄p(JPC = 2++) → a2(1660)→f2(1270)+π0 + π0,
d p̄p(JPC = 2++) → π2(1670)→f2(1270)+π0 + π0.
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Fig. 11. The double-differential density �(Ma, Mb) calculated
for a sum of the mechanisms (18-20) as discussed in the text.
The surface plot has its origin in the rear left corner, allowing
a better view of the interesting features of the data

resonance mechanisms without introducing any HBT-like
stochastic correlations.

The double–differential densities calculated for the
mechanisms (17,18,19,20) are shown in Figs.10a,b,c,d.

By varying the relative weights and phases of the indi-
vidual mechanisms we have found that the superpositions
of the three mechanisms (18,19, and 20) are sufficient to
obtain a qualitative agreement with the data:

T = c1Tf2(1270)+2π0 + c2eiφ2 Ta2(1660)+π0

+c3eiφ3 Tπ2(1670)+π0 (26)

In fact, the main features of the data can be reproduced
even with the two mechanisms (19) and (20) (note that
they include the contribution from the lighter meson
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f2(1270), see Figs. 12b,c. Figure 11 shows an example cor-
responding to a superposition of the mechanisms (19) and
(20) with c1 = 0, c2 = 0.45, c3 = 0.91, φ2 = 0, φ3 = 3π/2
(all individual amplitudes are normalized to the same to-
tal yield of 4π0). We are not aiming at an optimal fit to
the data in the present context, but Fig. 11 illustrates that
the observed resonance peaks are consistent with a mod-
erate enhancement near the origin. Compare this figure
with the experimental distribution of Fig. 8.

5 Conclusion

For the annihilation reaction p̄p → 4π0 at rest, the BE
correlations between two neutral pions have been stud-
ied for the first time with full event reconstruction. The
inclusive 2π0 correlation is fairly flat at small relative mo-
mentum while the inclusive pair correlation in the charged
channel p̄p → 2π+2π− shows a weak enhancement [5].

For the more sensitive and less model-dependent dou-
ble-differential distribution, a weak peaking is observed
near the origin (small invariant masses of the two neutral
pion pairs). This is similar to though less pronounced than
in the 2π+2π− channel.

The data of the single- and double-differential 2π0 cor-
relations were compared to model calculations. The role of
the ρ meson dominating the 2π+2π− dynamics is replaced
by a model with a2, π2, and f2 resonances in the 4π0

case. Resonance production explains the fairly different
spectra of the two reactions. It is found that with an ade-
quate choice of reaction amplitudes the dynamical model
describes the main features of the single- and double-
differential distributions, including a slight enhancement
near the origin.

From this result, together with the absence of a corre-
lation signal in the inclusive 2π0 correlation, we conclude
that our analysis does not favor the interpretation of pion
correlation signals in terms of an HBT-type model with
stochastic pion emission phases.

Acknowledgements. The authors are very grateful to the Crys-
tal Barrel Collaboration for making available the data. In this
connection we would like to thank in particular Ulrich Wied-
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A Appendix

The amplitudes corresponding to the resonance mecha-
nisms (18,19,20,23,17,24) are given by the diagrams in
Figs. 12. The calculations are straightforward, so only
some major elements are outlined here. The p̄p vertices
are taken with a minimum number of derivatives. The
vertex p̄p(JPC = 2++) → a2π has the form

Vp̄p(JP C=2++)→a2π = BµνgνγTγδε
αβµδ(pπ)α(pa2)β (27)

where Bµν is the polarization tensor of the p̄p(JPC =
2++) state and Tγδ is the polarization tensor of the a2,
and pπ and pa2 are the momenta of the corresponding
particles. The a2 → f2π vertex has a similar structure,
and the p̄p(JPC = 2++) → π2π is a trivial S-wave vertex.
The f2ππ vertex has the form

Vf2ππ = gf2ππTµνqµqνFf2ππ(m2
ππ) (28)

where gf2ππ is the coupling constant, Tµν is the polariza-
tion tensor of the f2, q = p1−p2, pn are the pion momenta,
and Ff2ππ(m2

ππ) is the form factor depending on the in-
variant mass of the ππ system.

The propagators corresponding to the tensor particles
are given by the formula

G(p) =
1
2 (Πµµ′

Πνν′
+ Πνµ′

Πµν′
) − 1

3 (ΠµνΠµ′ν′
)

p2 − m2
0 − M(p2)

(29)

Πµν = gµν − pµpν/p2 (30)
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where m0 is the bare mass and M(p2) is the mass opera-
tor. The mass operator for the f2 meson corresponding to
the ππ loop is defined by the dispersion integral:

M(s) =
1
2π

∫ ∞

4m2
π

Γ (s′)
s − s′ ds′ (31)

Γ (s) =
g2
1 |Ff2ππ(s)|2k5

60πs
(32)

where k = k(s) =
√

s/4 − m2
π is the relative momentum

in the ππ system and the dipole form factor Ff2ππ(s) =
(1 + k(s)2/ν2)−2 is used with ν = 1 GeV. The parame-
ters m0 and gf2ππ are defined by the mass and the width
of the f2 meson, with the other decay channels being ap-
proximated by a constant width. The propagators of a2
and π2 are constructed in a similar way. The σ block in
Fig.12a denotes the full Green function of the ππ system in
the scalar-isoscalar channel; it was taken from the coupled
channel model [19]. The components above are combined
to construct the amplitudes for the resonance channels
concerned; since the procedure is straightforward, we skip
the resulting formulas involving lengthy tensor structures.
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